\(\int (a+b \arccos (c x)) \, dx\) [143]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 8, antiderivative size = 31 \[ \int (a+b \arccos (c x)) \, dx=a x-\frac {b \sqrt {1-c^2 x^2}}{c}+b x \arccos (c x) \]

[Out]

a*x+b*x*arccos(c*x)-b*(-c^2*x^2+1)^(1/2)/c

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {4716, 267} \[ \int (a+b \arccos (c x)) \, dx=a x+b x \arccos (c x)-\frac {b \sqrt {1-c^2 x^2}}{c} \]

[In]

Int[a + b*ArcCos[c*x],x]

[Out]

a*x - (b*Sqrt[1 - c^2*x^2])/c + b*x*ArcCos[c*x]

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 4716

Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcCos[c*x])^n, x] + Dist[b*c*n, Int[
x*((a + b*ArcCos[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = a x+b \int \arccos (c x) \, dx \\ & = a x+b x \arccos (c x)+(b c) \int \frac {x}{\sqrt {1-c^2 x^2}} \, dx \\ & = a x-\frac {b \sqrt {1-c^2 x^2}}{c}+b x \arccos (c x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.00 \[ \int (a+b \arccos (c x)) \, dx=a x-\frac {b \sqrt {1-c^2 x^2}}{c}+b x \arccos (c x) \]

[In]

Integrate[a + b*ArcCos[c*x],x]

[Out]

a*x - (b*Sqrt[1 - c^2*x^2])/c + b*x*ArcCos[c*x]

Maple [A] (verified)

Time = 0.18 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.03

method result size
default \(a x +\frac {b \left (c x \arccos \left (c x \right )-\sqrt {-c^{2} x^{2}+1}\right )}{c}\) \(32\)
parts \(a x +\frac {b \left (c x \arccos \left (c x \right )-\sqrt {-c^{2} x^{2}+1}\right )}{c}\) \(32\)
derivativedivides \(\frac {c x a +b \left (c x \arccos \left (c x \right )-\sqrt {-c^{2} x^{2}+1}\right )}{c}\) \(34\)

[In]

int(a+b*arccos(c*x),x,method=_RETURNVERBOSE)

[Out]

a*x+b/c*(c*x*arccos(c*x)-(-c^2*x^2+1)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.03 \[ \int (a+b \arccos (c x)) \, dx=\frac {b c x \arccos \left (c x\right ) + a c x - \sqrt {-c^{2} x^{2} + 1} b}{c} \]

[In]

integrate(a+b*arccos(c*x),x, algorithm="fricas")

[Out]

(b*c*x*arccos(c*x) + a*c*x - sqrt(-c^2*x^2 + 1)*b)/c

Sympy [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.94 \[ \int (a+b \arccos (c x)) \, dx=a x + b \left (\begin {cases} x \operatorname {acos}{\left (c x \right )} - \frac {\sqrt {- c^{2} x^{2} + 1}}{c} & \text {for}\: c \neq 0 \\\frac {\pi x}{2} & \text {otherwise} \end {cases}\right ) \]

[In]

integrate(a+b*acos(c*x),x)

[Out]

a*x + b*Piecewise((x*acos(c*x) - sqrt(-c**2*x**2 + 1)/c, Ne(c, 0)), (pi*x/2, True))

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.00 \[ \int (a+b \arccos (c x)) \, dx=a x + \frac {{\left (c x \arccos \left (c x\right ) - \sqrt {-c^{2} x^{2} + 1}\right )} b}{c} \]

[In]

integrate(a+b*arccos(c*x),x, algorithm="maxima")

[Out]

a*x + (c*x*arccos(c*x) - sqrt(-c^2*x^2 + 1))*b/c

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.00 \[ \int (a+b \arccos (c x)) \, dx=a x + \frac {{\left (c x \arccos \left (c x\right ) - \sqrt {-c^{2} x^{2} + 1}\right )} b}{c} \]

[In]

integrate(a+b*arccos(c*x),x, algorithm="giac")

[Out]

a*x + (c*x*arccos(c*x) - sqrt(-c^2*x^2 + 1))*b/c

Mupad [B] (verification not implemented)

Time = 0.36 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.94 \[ \int (a+b \arccos (c x)) \, dx=a\,x-\frac {b\,\sqrt {1-c^2\,x^2}}{c}+b\,x\,\mathrm {acos}\left (c\,x\right ) \]

[In]

int(a + b*acos(c*x),x)

[Out]

a*x - (b*(1 - c^2*x^2)^(1/2))/c + b*x*acos(c*x)